赌博网-赌球网址-体育

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

柬埔寨百家乐的玩法技巧和规则| 林口县| 百家乐官网赌局| 怎样赢百家乐的玩法技巧和规则| 大发888,| 百家乐网上投注网站| 现金赌博网| 玩机器百家乐心得| 真钱现金斗地主| 百家乐官网桌码合| 百家乐五铺的缆是什么意思| 百家乐官网庄闲必胜手段| 百家乐桌手机套| 百家乐官网庄不连的概率| 百家乐开户最快的平台是哪家| 长宁县| 悍马百家乐的玩法技巧和规则| 香港六合彩图库| 澳门百家乐规则视频| 大田县| 赌球者| 百家乐可以算牌么| 网上百家乐真实度| 百家乐官网千术道具| 太阳城俱乐部| 必博百家乐游戏| 兰州市| 百家乐隔一数打投注法| 安国市| 威尼斯人娱乐城不打烊| 大都会百家乐官网的玩法技巧和规则| 大发888娱乐登陆| 破解百家乐打路单| 百家乐官网玩法皇冠现金网| 百博百家乐官网的玩法技巧和规则| 菲律宾云顶国际| 百家乐赌场在线娱乐| 百家乐试玩网站| 百家乐游戏合法吗| 百家乐官网平台导航| 百家乐大西洋|