赌博网-赌球网址-体育

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
阴宅24水口| 郓城县| 顶级赌场手机版| 大哥大百家乐的玩法技巧和规则| 百家乐巴黎| 皇冠线上开户| 本溪棋牌娱乐网| bet365金融| 娱乐城注册送68| 天马娱乐城| 岳阳市| 元游棋牌下载| 太阳城娱乐城怎么样| 柳州市| 洮南市| 百家乐官网稳赚打法| 易胜博百家乐官网输| 百家乐官网电子作弊器| 大发888游戏平台hanpa| 百家乐官网赌博现金网| 有破解百家乐官网仪器| 百家乐官网投注平台导航网| 聚宝盆百家乐官网的玩法技巧和规则| 百家乐官网推荐| 全讯网纯净版| 游戏百家乐的玩法技巧和规则| 百家乐筹码| 百家乐大赌场娱乐网规则| 七匹狼百家乐的玩法技巧和规则| 网上百家乐正规代理| 威尼斯人娱乐城投注| 大发888 打法888 大发官网| 绩溪县| 新百家乐官网的玩法技巧和规则 | 大发888官方网下载| 南通棋牌游戏中心| 玩百家乐官网会犯法吗| 实战百家乐官网的玩法技巧和规则 | 永利百家乐官网现金网| 玩百家乐官网输了| 百家乐天下第一和|