赌博网-赌球网址-体育

科學(xué)研究

打造高水平科技創(chuàng)新平臺(tái)和一流科研團(tuán)隊(duì)!

MENU

學(xué)術(shù)活動(dòng)

“數(shù)通古今,學(xué)貫中外”學(xué)術(shù)講座第六十一期預(yù)告【Prof. Yongjin Liu (劉勇進(jìn))】

供稿: 曹鵬(數(shù)學(xué)與統(tǒng)計(jì)學(xué)院) 編輯: 孫紅權(quán) 時(shí)間:2013-12-30

報(bào)告時(shí)間: 2014年1月8日(周三) 15:40-16:40
地點(diǎn):北京理工大學(xué)研究生樓103
報(bào)告人:  Prof. Yongjin Liu (劉勇進(jìn)),沈陽航空航天大學(xué)理學(xué)院院長(zhǎng)
Title: A Semismooth Newton-CG Based Dual PPA for Matrix Spectral Norm Approximation Problems

Abstract: We consider a class of matrix spectral norm approximation problems for finding an affine combination of given matrices having the minimal spectral norm subject to some prescribed linear equality and inequality constraints. These problems arise often in numerical algebra, engineering and other areas, such as finding Chebyshev polynomials of matrices and fastest mixing Markov chain models. Based on classical analysis of proximal point algorithms (PPAs) and recent developments on semismooth analysis of nonseparable spectral operators, we propose a semismooth Newton-CG based dual PPA for solving the matrix norm approximation problems. Furthermore, when the primal constraint nondegeneracy condition holds for the subproblems, our semismooth Newton-CG method is proven to have at least a superlinear convergence rate. We also design efficient implementations for our proposed algorithm to solve a variety of instances and compare its performance with the nowadays popular first order alternating direction method of multipliers (ADMM). The results show that our algorithm substantially outperforms the ADMM, especially for the constrained cases and it is able to solve the problems robustly and efficiently to a relatively high accuracy.

個(gè)人簡(jiǎn)介:劉勇進(jìn),教授,碩士生導(dǎo)師,遼寧省“百千萬人才工程”千層次人才。2004.07畢業(yè)于大連理工大學(xué),獲運(yùn)籌學(xué)與控制論專業(yè)博士學(xué)位,博士導(dǎo)師是張立衛(wèi)教授;2004.08-2006.07在汕頭大學(xué)從事博士后科研工作,其后在新加坡國(guó)立大學(xué)從事矩陣優(yōu)化研究工作,師從Sun Defeng教授和Toh Kim-Chuan教授。其研究方向主要集中在矩陣優(yōu)化理論、方法與應(yīng)用,錐約束優(yōu)化,數(shù)值計(jì)算等應(yīng)用領(lǐng)域,其研究成果在Mathematical Programming (Series A)等學(xué)術(shù)期刊上共發(fā)表20余篇論文,發(fā)表論文已被他引190余次;主持國(guó)家自然科學(xué)基金項(xiàng)目2項(xiàng),其中包括面上項(xiàng)目1項(xiàng),青年基金項(xiàng)目1項(xiàng);主持教育部留學(xué)歸國(guó)人員啟動(dòng)基金1項(xiàng),入選“2012年遼寧省高等學(xué)校杰出青年學(xué)者成長(zhǎng)計(jì)劃”,主持博士啟動(dòng)基金1項(xiàng),參與多項(xiàng)國(guó)家自然科學(xué)基金項(xiàng)目。現(xiàn)任沈陽航空航天大學(xué)理學(xué)院院長(zhǎng),遼寧省數(shù)學(xué)學(xué)會(huì)常務(wù)理事,遼寧省運(yùn)籌學(xué)學(xué)會(huì)常務(wù)理事。

中华德州扑克论坛| 百家乐官网gamble| 大发888娱乐手机版| 百家乐官网麻将牌| 百家乐官网21点桌| 百家乐官网高手和勒威| 大发888游戏下载官网免费| 百家乐赌场破解方法| 迪威百家乐官网赌场娱乐网规则| 百家乐官网博彩技巧视频| 吉水县| 乌恰县| 阳谷县| 七乐百家乐官网现金网| 永利博百家乐官网现金网| 百家乐官网平注法是什么| 网上百家乐官网哪里开户| 青田县| 百家乐官网赢钱皇冠网| 灌南县| 金赞百家乐官网现金网| 宝龙百家乐官网娱乐城| 元游棋牌官网| 欢乐谷娱乐城| 百家乐官网断缆赢钱| 玩百家乐官网凤凰娱乐城| 百家乐官网家居 | 澳门网上赌场| 壹贰博网| 民权县| 百家乐官网必胜法hk| 大世界百家乐官网娱乐网| 百家乐代理龙虎| 菲律宾百家乐开户| 大发扑克娱乐网| 缅甸百家乐官网娱乐| 游戏机百家乐官网的玩法技巧和规则 | 乐中百家乐官网的玩法技巧和规则| 百家乐官网娱乐官网网| 玩百家乐如何看路| 威尼斯人娱乐城博彩|