赌博网-赌球网址-体育

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

现金网开户送彩金| 丹阳棋牌游戏中心| 真人百家乐官网视频| 百家乐双人操作分析仪| 百家乐官网玩法简介| 保单百家乐游戏机| 赌场风云主题曲| 红9百家乐官网的玩法技巧和规则 高尔夫百家乐官网的玩法技巧和规则 | 大发888赌场是干什么的| 韩国百家乐官网的玩法技巧和规则 | 百家乐高额投注| 百家乐官网视频多开器| 正品百家乐网站| 百家乐官网扫描技术| 澳门博彩有限公司| 澳门百家乐技巧皇冠网| 百家乐官网视频百家乐官网| 百家乐网络娱乐场开户注册| 澳门百家乐官网打法百家乐官网破解方法| 百家乐正式版| 金三角百家乐官网的玩法技巧和规则 | 百家乐官网二号博彩正网| 百家乐8点直赢| 好用百家乐官网软件| 大发888娱乐城pt| 视频百家乐官网平台| 百家乐官网赢钱皇冠| 大发888爱好| 百家乐2号机器投注技巧| 百家乐官网论坛白菜| 狼2老虎机清零密码| 百家乐筹码防伪定制| 百家乐官网挂机软件| 百家乐官网投注平台| 大发888娱乐场17| 金榜百家乐现金网| 钱隆百家乐官网软件| 武穴市| 网页棋牌游戏| 百家乐棋牌游戏源码| 在线百家乐代理|