赌博网-赌球网址-体育

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

博发百家乐游戏| 百家乐必赢外挂软件| 澳门百家乐园游戏| 大英县| 百家乐官网77scs官网| 久治县| 有钱人百家乐的玩法技巧和规则| 爱赢娱乐| 大地百家乐的玩法技巧和规则| 黄金会百家乐官网赌城| 图木舒克市| 百家乐天下| 大东方百家乐游戏| 百家乐官网投注方式| 太阳神百家乐官网的玩法技巧和规则| bet365提款多久到账| 网上有百家乐玩吗| 百家乐官网技巧看| 百家乐官网秘诀| 金堂县| 大发888信誉娱乐城管理| 百家乐官网最好投注法是怎样的去哪儿能了解一下啊 | 蓝盾百家乐赌场娱乐网规则| 百家乐官网作弊知识| 土默特左旗| 八大胜开户| 百家乐园百乐彩| 百家乐出牌规| 百家乐天下第一缆| 上海百家乐官网的玩法技巧和规则 | rmb百家乐的玩法技巧和规则| 24山向方位度数| 百家乐官网单机游戏下| 百家乐官网体育宝贝| 韦德国际| 澳博娱乐| 邵武市| 滨州市| 真人百家乐官网信誉| 宝龙线上娱乐城| 德州扑克概率|