赌博网-赌球网址-体育

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

棋牌娱乐城| 大发888检测技能| 赌场百家乐是如何| 虚拟百家乐官网游戏下载| 沙坪坝区| 百家乐顶尖高手| 至尊百家乐官网娱乐网| 新锦江娱乐城备用网址| 澳门百家乐洗码提成查询| 百家乐官网也能赢钱么| 金世豪百家乐的玩法技巧和规则| 中国百家乐官网的玩法技巧和规则 | 百家乐官网群博爱彩| 大发888游戏官方网站| 百家乐群博爱彩| 太阳城娱乐网可信吗| 网上百家乐破战| 澳门百家乐官网群代理| 赌博娱乐城| 大发888 娱乐场| 百家乐平注常赢玩法技巧| 至富百家乐官网的玩法技巧和规则| 玩百家乐官网保时捷娱乐城| 大发888中文下载| 威尼斯人娱乐开户| 百家乐官网开闲的几率多大| 百家乐官网象棋赌博| 百家乐官网国际娱乐城| 大发在线扑克| 赌博百家乐的乐趣| 金宝博百家乐现金| 免费百家乐官网倍投软件| 一直对百家乐官网很感兴趣.zibo太阳城娱乐城| 大发888dafabet| Bet百家乐娱乐城| 15人百家乐桌| 百家乐官网投注法减注| 皇宝娱乐| 林周县| 百家乐官网怎么对冲打| 百家乐官网路单免费下载|