赌博网-赌球网址-体育

今天是
今日新發(fā)布通知公告0條 | 上傳規(guī)范

“數(shù)通古今,學貫中外”系列講座【Renming-Song】

作者:高冰 ?? 來源:數(shù)學學院?? 發(fā)布日期:2012-07-20

主講人:Renming-Song
講座題目:Harnack principle for symmetric stable processes and subordinate Brownian motion
時  間:2012年7月23,24,25, 27日上午10:40~12:00, 及7月30, 31日上午9:00~11:00.
地  點:研究生樓209A
主講人介紹
  Renming-Song received the B.S. degree in mathematics in 1983 and M.S. degree in Mathemtics in 1986, both from Hebei University, Baodin, China. He received his Ph.D. degree in Mathematics from the University of Florida, Gainesville in 1993. He was a visiting assistant professor at Northwestern University and the University of Michigan before moving to the University of Illinois in 1997, where he is a Professor of Mathematics since 2009.
  His research interests include stochastic analysis, Markov processes, potential theory and financial mathematics. Renming Song has published more than 77 research papers, in top mathematical Journals.
主要內(nèi)容:Recently many breakthroughs have been made in the potential theory of symmetric stable processes and subordinate Brownian motions. In all these recent developments, the boundary Harnack principle played an essential role. In this series of lectures I plan to give a self-contained account of the boundary Harnack principle for symmetric stable processes. Then I will extend the argument to obtain the boundary Harnack principle
for a large class of subordinate Brownian motions.

Here are some references:

[1]. K. Bogdan. The boundary Harnack principle for the fractional Laplacian. Studia Math. (1997), 43--80.
[2]. P. Kim, R. Song and Z. Vondracek. Boundary Harnack Principle for Subordinate Brownian Motions. Stoch. Proc. Appl. 119 (2009), 1601--1631.
[3]. P. Kim, R. Song and Z. Vondracek. Potential theory of subordinate Brownian motions revisited. To appear in Stochastic Analysis and Applications to Finance--Essays in Honour of Jia-an Yan, edited by Tusheng Zhang and Xunyu Zhou. World Scientific,2012.
[4]. R. Song. Potential theory of subordinate Brownian motions.
http://open.nims.re.kr/download/probability/song.pdf
[5]. R. Song and J.-M. Wu. Boundary Harnack inequality for symmetric stable processes. J. of Funct. Anal. 168 (1999),403-427.


精通百家乐的玩法技巧和规则| 至富百家乐的玩法技巧和规则 | 百家乐官网关台| 线上百家乐赢钱| 固原市| 真人百家乐输钱惨了| 钟山县| 赌场百家乐图片| 百家乐官网和| 莆田棋牌游戏| 百家乐官网娱乐网代理佣金| 威尼斯人娱乐城信誉好不好| 百家乐官网真人游戏攻略| 大发888ios版| 永利高百家乐开户| 百家乐官网的保单打法| 百家乐开户过的路纸| 三星百家乐官网的玩法技巧和规则| 利来国际注册| 百家乐变牌器批发| 百家乐官网前四手下注之观点| 老虎机小游戏| 百家乐官网游戏开户网址| 澳门赌盘| 百家乐什么方法容易赢| 最大的百家乐官网网站| 澳门赌盘| 大发888有赢钱的吗| 百家乐游戏机在哪有| 百家乐官网千术道具| 百家乐秘籍下注法| 至尊百家乐官网20| 百家乐官网怎样投注好| 百家乐真人荷官网| 御匾会百家乐官网的玩法技巧和规则| 百家乐官网闲单开多少| 香港六合彩报码| 全讯网开奖结果| 现金百家乐赌法| 百家乐官网职业赌徒的解密| 真人百家乐官网888|